
Apurva Bhandari

Kubernetes
Networking and Istio

$whoami

Apurva Bhandari

SRE / DevOps
Docker & Kubernetes Enthusiast
Speaker at Meetups
Email: apurvbhandari@gmail.com
LinkedIn: https://www.linkedin.com/in/apurvabhandari-linux
GitHub: https://github.com/apurvabhandari/Kubernetes

mailto:apurvbhandari@gmail.com
https://www.linkedin.com/in/apurvabhandari-linux
https://github.com/apurvabhandari/Kubernetes

Apurva Bhandari

Agenda
1. Kubernetes Networking Basic
2. Advance routing
3. Introduction to Service Mesh Istio
4. Traffic Routing by Istio
5. Networking with and without Istio

Types of Services

1. ClusterIP (Default)
2. NodePort
3. LoadBalancer
4. ExternalName

Services

Apurva Bhandari

apiVersion: v1
kind: Service
metadata:
 name: example-prod
spec:
 selector:
 app: nginx
 env: prod
 ports:
 - protocol: TCP
 port: 80
 targetPort: 80
 type: ClusterIP

a. ClusterIP

Apurva Bhandari

Host A

Pod
Labels:
env: prod
app: nginx

kube-proxy

Host B

Pod
Labels:
env: prod
app: nginx

kube-proxy

P
O
D
N
E
T
W
O
R
K

apiVersion: v1
kind: Service
metadata:
 name: nginx
 namespace: default
spec:
 ports:
 - port: 80
 protocol: TCP
 targetPort: 80
 nodePort: 30001
 selector:
 run: nginx
 type: NodePort

b. NodePort

Apurva Bhandari

Host A

Pod
Labels:
env: prod
app: nginx

kube-proxy

Host B

Pod
Labels:
env: prod
app: nginx

kube-proxy

Access

port

30001

apiVersion: v1
kind: Service
metadata:
 name: tomcat
 namespace: default
spec:
 ports:
 - name: healthz
 nodePort: 31768
 port: 8080
 protocol: TCP
 targetPort: 8080
 selector:
 run: tomcat
 type: LoadBalancer

c. LoadBalancer

Apurva Bhandari

Host A

Pod
Labels:
env: prod
app: nginx

kube-proxy

Host B

Pod
Labels:
env: prod
app: nginx

kube-proxy

Load
Balancer

port

30001

Access

apiVersion: v1
kind: Service
metadata:
 name: my-service
 namespace: prod
spec:
 type: ExternalName
 externalName: my.database.example.com

d. ExternalName

Apurva Bhandari

User space proxy mode iptables proxy mode

IPVS proxy mode

Introduction to Service Mesh - Istio

Understand the
dependencies between
services, the nature and
flow of traffic between
them, and quickly identify
issues with distributed
tracing

Transparently inject mutual
TLS on each call, securing
and encrypting traffic.
Apply organizational
policy to the interaction
between services, ensure
access policies are
enforced and resources are
fairly distributed among
consumers.

Increase reliability by
shielding applications from
flaky networks and
cascading failures in
adverse conditions.
Timeouts, retries, health
checks and circuit
breakers -- all applied
regardless of language,
across the fleet.

Intelligent routing Resilience Security & policy

Control traffic between
services with dynamic
route configuration,
conduct A/B tests, release
canaries, and gradually
upgrade versions using
red/black deployments.

Secure, monitor and manage services

Telemetry

Securing service
communications

Uniform service-level
observability

Traffic management
and operational agility

Monitor the “golden signals” (traffic,
error rates and latency) for all
services, and collect logs on all calls.
Use distributed tracing for in-depth
performance analysis. Service
dependency graphs make it easy to
debug and to understand latency
and hotspots.

Strongly authenticate services (not
hosts) across heterogeneous
deployment environments. Limit
access of sensitive data to
authorized services without relying
on L3 controls. Understand security
posture of production environment
through service dependency
graphs.

Send inter-cluster and inter-
environment without manually
provisioning ingress, egress, edge
layers or hardware LBs. Change
service behavior and traffic flow
without redeploying or change of
code. Control which services can talk
to whom via policy and routing
rules.

Istio Value Proposition

Uniform
observability
Collect the golden signals for
every service and logs for
every call.

Understand services and their
dependencies.

Set, monitor and enforce
SLOs on services

Bird’s eye view of service
behavior for issue triage,
reduce time to detect, triage

Operational
agility
Scale by directing traffic to
multiple versions

Roll out new versions
without worrying about
ops challenges

Apply access control, rate
limiting policies to protect
services from bad
behavior

Service A

Service B’

Service B

Service B

Service B

Canary

95%

5%

Service A

Service B’

Service B

Service B

Service B

Canary

User-agent Android

User-agent Apple

Policy driven security

Enable mTLS for authentication and encryption.

Authorize access based on service identity or any
channel attribute.

Configure finer grained RPC-level access control for
REST and gRPC.

Defence in
depth - security
does not stop at

the edge.

Networking proxy types

● Middle Proxy

● Edge Proxy

● Embedded Client Library

● Client Side / Sidecar Proxy

● Client Side Load Balancing, no SPoF
● Traditional Load Balancer is Layer 4
● Lightweight sidecars to manage traffic

between services
● Scaling capabilities + polyglot aspect
● Sidecars can do much more than just load

balancing!

The magic of the sidecar!

● Deployed with every
workload

● Proxies all traffic into
and out of a service

● Directs traffic (including
routing rules)

● Enforces policy
● Reports telemetry
● All with no embedded

client library

Listeners

Routes

Clusters

Endpoints

what Envoy listens for

where traffic can be sent

how to send traffic

hosts able to receive traffic

● A C++ based L4/L7 proxy

● Lightweight, low memory footprint

● Battle-tested @ Lyft

○ 100+ services
○ 10,000+ VMs
○ 2M req/s

Goodies:
● HTTP/2 & gRPC
● Zone-aware load balancing w/ failover
● Health checks, circuit breakers, timeouts, retry

budgets
● No hot reloads - API driven config updates

Istio’s contributions:
● Transparent proxying w/ SO_ORIGINAL_DST
● Traffic routing and splitting
● Request tracing using Zipkin
● Fault injection

Envoy

Architectural components

● Envoy: Network proxy to intercept
communication and apply policies.

● Pilot: Control plane to configure and push
service communication policies

● Mixer: Policy enforcement with a flexible
plugin model for providers for a policy.

● Istio Auth: Service-to-service auth[n,z] using
mutual TLS, with built-in identity and
credential management. Control Plane API

Mixer

Service A Service B

proxy proxy

Pilot Citadel

Config data
to Envoys

TLS certs to
Envoys

Policy checks,
telemetry

Mesh Boundary

Service A Service B

Mesh proxy Mesh proxy

Ingress
gateway

Egress
gatewayPublic Internet External Service

Via egress gateway

Directly via sidecar

Public Internet

Ingress Gateway

Host www.myapp.com
Port 80
TLS Certs

Gateway

Host www.myapp.com
Rewrite URL
Goto service B, subset v1

VirtualService

Host service B
Subset v1 (prod), v2 (canary)
TLS settings
Circuit breaker
LoadBalancer settings

DestinationRule
Service B
Deployment
version: production

Service B
Deployment
version: canary

Service A

Traffic Management

● Application rollout (in percentage distribution)
● Traffic steering (content based)
● Resiliency
● Efficiency

Thank You

